Harmonic number identities via polynomials with r-Lah coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Number Identities Via Euler’s Transform

We evaluate several binomial transforms by using Euler's transform for power series. In this way we obtain various binomial identities involving power sums with harmonic numbers.

متن کامل

New Harmonic Number Identities with Applications

We determine the explicit formulas for the sum of products of homogeneous multiple harmonic sums ∑n k=1 ∏r j=1Hk({1} ) when ∑r j=1 λj ≤ 5. We apply these identities to the study of two congruences modulo a power of a prime.

متن کامل

Riordan arrays and harmonic number identities

Let the numbers P (r, n, k) be defined by P (r, n, k) := Pr ( H n −H (1) k , · · · , H (r) n −H (r) k ) , where Pr(x1, · · · , xr) = (−1)Yr(−0!x1,−1!x2, · · · ,−(r− 1)!xr) and Yr are the exponential complete Bell polynomials. By observing that the numbers P (r, n, k) generate two Riordan arrays, we establish several general summation formulas, from which series of harmonic number identities are...

متن کامل

New Classes of Harmonic Number Identities

We develop some new classes of harmonic number identities, and give an integral proof of an identity given by Sun and Zhao.

متن کامل

ON THE NUMBER OF POLYNOMIALS WITH COEFFICIENTS IN [n]

In this paper we introduce several natural sequences related to polynomials of degree s having coefficients in {1, 2, ..., n} (n ∈ N) which factor completely over the integers. These sequences can be seen as generalizations of A006218. We provide precise methods for calculating the terms and investigate the asymptotic behavior of these sequences for s ∈ {1, 2, 3} .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus. Mathématique

سال: 2020

ISSN: 1778-3569

DOI: 10.5802/crmath.53